Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Defining fairness in algorithmic contexts is challenging, particularly when adapting to new domains. Our research introduces a novel method for learning and applying group fairness preferences across different classification domains, without the need for manual fine-tuning. Utilizing concepts from inverse reinforcement learning (IRL), our approach enables the extraction and application of fairness preferences from human experts or established algorithms. We propose the first technique for using IRL to recover and adapt group fairness preferences to new domains, offering a low-touch solution for implementing fair classifiers in settings where expert-established fairness tradeoffs are not yet defined.more » « less
- 
            Recent works extend classification group fairness measures to sequential decision processes such as reinforcement learning (RL) by measuring fairness as the difference in decisionmaker utility (e.g. accuracy) of each group. This approach suffers when decision-maker utility is not perfectly aligned with group utility, such as in repeat loan applications where a false positive (loan default) impacts the groups (applicants) and decision-maker (lender) by different magnitudes. Some works remedy this by measuring fairness in terms of group utility, typically referred to as their "qualification", but few works offer solutions that yield group qualification equality. Those that do are prone to violating the "no-harm" principle where one or more groups’ qualifications are lowered in order to achieve equality. In this work, we characterize this problem space as having three implicit objectives: maximizing decision-maker utility, maximizing group qualification, and minimizing the difference in qualification between groups. We provide a RL policy learning technique that optimizes for these objectives directly by constructing a multi-objective reward function that encodes these objectives as distinct reward signals. Under suitable parameterizations our approach is guaranteed to respect the "no-harm" principle.more » « less
- 
            Group fairness definitions such as Demographic Parity and Equal Opportunity make assumptions about the underlying decision-problem that restrict them to classification problems. Prior work has translated these definitions to other machine learning environments, such as unsupervised learning and reinforcement learning, by implementing their closest mathematical equivalent. As a result, there are numerous bespoke interpretations of these definitions. This work aims to unify the shared aspects of each of these bespoke definitions, and to this end we provide a group fairness framework that generalizes beyond just classification problems. We leverage two fairness principles that enable this generalization. First, our framework measures outcomes in terms of utilities, rather than predictions, and does so for both the decision-maker and the individual. Second, our framework can consider counterfactual outcomes, rather than just observed outcomes, thus preventing loopholes where fairness criteria are satisfied through self-fulfilling prophecies. We provide concrete examples of how our utility fairness framework avoids these assumptions and thus naturally integrates with classification, clustering, and reinforcement learning fairness problems. We also show that many of the bespoke interpretations of Demographic Parity and Equal Opportunity fit nicely as special cases of our framework.more » « less
- 
            We study the design of caching policies in applications such as serverless computing where there is not a fixed size cache to be filled, but rather there is a cost associated with the time an item stays in the cache. We present a model for such caching policies which captures the trade-off between this cost and the cost of cache misses. We characterize optimal caching policies in general and apply this characterization by deriving a closed form for Hawkes processes. Since optimal policies for Hawkes processes depend on the history of arrivals, we also develop history-independent policies which achieve near-optimal average performance. We evaluate the performances of the optimal policy and approximate polices using simulations and a data trace of Azure Functions, Microsoft's FaaS (Function as a Service) platform for serverless computing.more » « less
- 
            In the context of subscription-based services, many technologies improve over time, and service providers can provide increasingly powerful service upgrades to their customers but at a launching cost and the expense of the sales of existing products. We propose a model of technology upgrades and characterize the optimal pricing and timing of technology introductions for a service provider who price-discriminates among customers based on their upgrade experience in the face of customers who are averse to switching to improved offerings. We first characterize optimal discriminatory pricing for the infinite horizon pricing problem with fixed introduction times. We reduce the optimal pricing problem to a tractable optimization problem and propose an efficient algorithm for solving it. Our algorithm computes optimal discriminatory prices within a fraction of a second even for large problem instances. We then show that periodic introduction times, combined with optimal pricing, enjoy optimality guarantees. In particular, we first show that, as long as the introduction intervals are constrained to be nonincreasing, it is optimal to have periodic introductions after an initial warm-up phase. When allowing general introduction intervals, we show that periodic introduction intervals after some time are optimal in a more restricted sense. Numerical experiments suggest that it is generally optimal to have periodic introductions after an initial warm-up phase. Finally, we focus on a setting in which the firm does not price-discriminate based on customers’ experience. We show both analytically and numerically that in the nondiscriminatory setting, a simple policy of Myerson (i.e., myopic) pricing and periodic introductions enjoys good performance guarantees. Funding: This material is based upon work supported by INSEAD and University Pierre et Marie Curie [Grant ELICIT], as well as by the National Science Foundation [Grant 2110707]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2022.2364 .more » « less
- 
            We consider the problem of detecting norm violations in open multi-agent systems (MAS). We show how, using ideas from scrip systems, we can design mechanisms where the agents comprising the MAS are incentivised to monitor the actions of other agents for norm violations. The cost of providing the incentives is not borne by the MAS and does not come from fines charged for norm violations (fines may be impossible to levy in a system where agents are free to leave and rejoin again under a different identity). Instead, monitoring incentives come from (scrip) fees for accessing the services provided by the MAS. In some cases, perfect monitoring (and hence enforcement) can be achieved: no norms will be violated in equilibrium. In other cases, we show that, while it is impossible to achieve perfect enforcement, we can get arbitrarily close; we can make the probability of a norm violation in equilibrium arbitrarily small. We show using simulations that our theoretical results, which apply to systems with a large number of agents, hold for multi-agent systems with as few as 1000 agents–the system rapidly converges to the steady-state distribution of scrip tokens necessary to ensure monitoring and then remains close to the steady state.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available